Appendix A: Answer Keys to Odd Exercises Chapter 4

Section 4A

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>T-test stat</th>
<th>Sentence to explain T-test statistic.</th>
<th>Critical Value</th>
<th>Does the T-test statistic fall in a tail determined by a critical value? (Yes or No)</th>
<th>Are the sample means from the two groups significantly different or not? Explain.</th>
<th>Does sample data significantly disagree with H_0? Explain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Right Tailed</td>
<td>+1.383</td>
<td>The sample mean for group 1 was 1.383 standard errors above the sample mean for group 2</td>
<td>+2.447</td>
<td>No. The test statistic does not fall in the right tail.</td>
<td>No. The sample means are not significantly different since the test stat did not fall in the tail.</td>
<td>Sample data does not sig. disagree with H_0 since the test stat did not fall in the tail.</td>
</tr>
<tr>
<td>2. Left Tailed</td>
<td>-2.851</td>
<td></td>
<td>-1.773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Two Tailed</td>
<td>-1.501</td>
<td>The sample mean for group 1 was 1.501 standard errors below the sample mean for group 2</td>
<td>±2.006</td>
<td>No. The test statistic does not fall in either of the tails.</td>
<td>No. The sample means are not significantly different since the test stat did not fall in the tail.</td>
<td>Sample data does not sig. disagree with H_0 since the test stat did not fall in the tail.</td>
</tr>
<tr>
<td>4. Right Tailed</td>
<td>+3.561</td>
<td></td>
<td>+1.692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Two Tailed</td>
<td>+0.887</td>
<td>The sample mean for group 1 was 0.887 standard errors above the sample mean for group 2</td>
<td>±1.943</td>
<td>No. The test statistic does not fall in one of the tails.</td>
<td>No. The sample means are not significantly different since the test stat did not fall in the tail.</td>
<td>Sample data does not sig. disagree with H_0 since the test stat did not fall in the tail.</td>
</tr>
<tr>
<td>6. Left Tailed</td>
<td>-1.003</td>
<td></td>
<td>-2.759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Two Tailed</td>
<td>-4.416</td>
<td>The sample mean for group 1 was 4.416 standard errors below the sample mean for group 2</td>
<td>±1.994</td>
<td>Yes. The test statistic does fall in one of the tails</td>
<td>Yes. The sample means are significantly different since the test stat fell in the tail.</td>
<td>Sample data significantly disagrees with H_0 since the test stat fell in the tail.</td>
</tr>
<tr>
<td>8. Right Tailed</td>
<td>+0.275</td>
<td></td>
<td>+1.839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Left Tailed</td>
<td>-1.461</td>
<td>The sample mean for group 1 was 1.461 standard errors below the sample mean for group 2</td>
<td>-1.674</td>
<td>No. The test statistic does not fall in the left tail</td>
<td>No. The sample means are not significantly different since the test stat did not fall in the tail.</td>
<td>Sample data does not sig. disagree with H_0 since the test stat did not fall in the tail.</td>
</tr>
<tr>
<td>10. Two Tailed</td>
<td>+2.330</td>
<td></td>
<td>±2.138</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Answer Keys to Odd Exercises Chapter 4

<table>
<thead>
<tr>
<th>P-value Proportion</th>
<th>P-value %</th>
<th>Sentence to explain the P-value</th>
<th>Significance Level %</th>
<th>Significance Level Proportion</th>
<th>If H_0 is true, could the sample data occur by random chance or is it unlikely?</th>
<th>Reject H_0 or Fail to reject H_0?</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 0.0007</td>
<td>0.07%</td>
<td>If the null hypothesis is true, there is a 0.07% probability of getting the sample data or more extreme by random chance.</td>
<td>10%</td>
<td>0.10</td>
<td>Sample data unlikely to occur by random chance.</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>12. 0.421</td>
<td></td>
<td></td>
<td>1%</td>
<td></td>
<td>Sample data unlikely to occur by random chance.</td>
<td></td>
</tr>
<tr>
<td>13. 8.71×10^{-5}</td>
<td>0.00871%</td>
<td>If the null hypothesis is true, there is a 0.00871% probability of getting the sample data or more extreme by random chance.</td>
<td>5%</td>
<td>0.05</td>
<td>Sample data unlikely to occur by random chance.</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>14. 0.339</td>
<td></td>
<td></td>
<td>1%</td>
<td></td>
<td>Sample data unlikely to occur by random chance.</td>
<td></td>
</tr>
<tr>
<td>15. 0.076</td>
<td>7.6%</td>
<td>If the null hypothesis is true, there is a 7.6% probability of getting the sample data or more extreme by random chance.</td>
<td>5%</td>
<td>0.05</td>
<td>Sample data could occur by random chance.</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>16. 0</td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
<td>Sample data could occur by random chance.</td>
<td></td>
</tr>
<tr>
<td>17. 0.528</td>
<td>52.8%</td>
<td>If the null hypothesis is true, there is a 52.8% probability of getting the sample data or more extreme by random chance.</td>
<td>5%</td>
<td>0.05</td>
<td>Sample data could occur by random chance.</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>18. 0.0277</td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
<td>Sample data unlikely to occur by random chance.</td>
<td></td>
</tr>
<tr>
<td>19. 3.04×10^{-6}</td>
<td>0.000304%</td>
<td>If the null hypothesis is true, there is a 0.000304% probability of getting the sample data or more extreme by random chance.</td>
<td>1%</td>
<td>0.01</td>
<td>Sample data unlikely to occur by random chance.</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>20. 0.178</td>
<td></td>
<td></td>
<td>5%</td>
<td></td>
<td>Sample data unlikely to occur by random chance.</td>
<td></td>
</tr>
</tbody>
</table>

21.

Two quantitative data sets are considered matched pair if there is a one-to-one pairing between the data values. The first number in the first data set is directly related to the first number in the second data set. The second number in the first data set is directly related to the second number in the second data set, and so on. It is usually the same person measured twice.

Two quantitative data sets are considered independent groups if there is not a one-to-one pairing and individuals between the groups are not related. This is usually the case when we are comparing two separate groups like a random sample of adults to a random sample of children.
23. **Two-population Mean Assumptions** (Not Matched Pair, Independent groups)

- The two quantitative samples should be collected randomly or be representative of the population.
- Data values within each sample should be independent of each other.
- Data values between the two samples should be independent of each other.
- The sample sizes should be at least 30 or have a nearly normal shape.

25. **Two-population Mean Assumptions** (Matched Pair for Experiments. Same people or objects measured twice.)

- Quantitative ordered pair data
- Data values within the samples should be independent of each other.
- There should be at least thirty ordered pairs or the differences should have a nearly normal shape.

27. **Two-population Mean Assumptions** (Independent groups for Experiment)

- The two quantitative samples should be randomly assigned from the people or objects in the experiment.
- Data values within each sample should be independent of each other.
- Data values between the two samples should be independent of each other.
- The sample sizes should be at least 30 or have a nearly normal shape.

29.

To prove cause and effect we will need to set up a controlled experiment and control confounding variables. It must meet the assumptions for a two-population mean experiment. If the T-test statistic falls in the tail determined by the critical value and the P-value is lower than the significance level, then this would prove cause and effect.

These are independent groups and not matched pair.

\(\mu_1 \): Population mean average weight of male German Shepherds

\(\mu_2 \): Population mean average weight of male Dobermans

\(H_0 : \mu_1 = \mu_2 \) (The breed of dog is not related to the weight.)

\(H_0 : \mu_1 > \mu_2 \) (claim) (The breed of dog is related to the weight.)

Right-tailed test

Assumptions Check

Both random samples? Yes. Both samples were collected randomly.

Individual dogs within the sample and between the samples should be independent? Yes. A small random sample out of large population will probably not have dogs that are related, owned by the same owner, or have the exact same diet.

At least 30 or normal? Both sample sizes were less than 30 (20 and 14), but since both samples were normal, it does pass the 30 or normal requirement.

T-test Statistic = 0.558

The sample mean weight for the German Shepherds was 0.558 standard errors above the sample mean weight for the Dobermans.

Since the test statistic did not fall in the right tail determined by the critical value, the sample mean for the German Shepherds was not significantly different than the sample mean for the Dobermans.

P-value = 0.2906 = 29.06%
If the null hypothesis is true, there is a 29.06% probability of getting this sample data or more extreme by random chance.

Since the p-value is higher than the significance level, this sample data could have occurred by random chance.

Conclusion

There is not significant evidence to support the claim that the population mean average weight of male German Shepherds is significantly higher than the population mean average weight of Dobermans.

Relationship

The weights were not significantly different. This indicates that being a German Shepherd or Doberman is not related to the weight.

31.

These are independent groups and not matched pair.

\(\mu_1 \): Population mean average gas mileage (mpg) for cars made in the U.S.

\(\mu_2 \): Population mean average gas mileage (mpg) for cars not made in the U.S.

\(H_0 : \mu_1 = \mu_2 \) (The country a car is made in is not related to the gas mileage.)

\(H_0 : \mu_1 < \mu_2 \) (claim) (The country a car is made in is related to the gas mileage.)

Left-tailed test

Assumptions Check

Both random samples? Yes. Both samples were collected randomly.

Individual cars within the sample and between the samples should be independent? Probably not. The cars may have been made by the same manufacturer. Also the sample size is not significantly smaller than the population size.

At least 30 or normal? No. Both sample sizes were below 30 and not normal. The U.S. cars looked skewed right and the cars outside the U.S. data looked bimodal.

T-test Statistic = −2.001

The sample mean mpg for U.S. cars was 2.001 standard errors below the sample mean for cars outside the U.S.

Since the test statistic did fall in the left tail determined by the critical value, the sample mean mpg for the U.S. cars was significantly lower than the sample mean mpg for cars made outside the U.S.

P-value = 0.0273 = 2.73%

If the null hypothesis is true, there is a 2.73% probability of getting this sample data or more extreme by random chance.

Since the p-value is lower than the significance level, this sample data is unlikely to have occurred by random chance.

Conclusion

There is significant evidence to support the claim that the population mean average mpg for cars made in the U.S. is significantly lower than the population mean average mpg for cars made outside the U.S. This conclusion may not be true since the data did not pass all of the assumptions for inference.

Relationship

The weights were significantly different. This indicates that the country a car is made in may be related to the gas mileage (mpg).
33.
These are independent groups and not matched pair.
\[\mu_1: \text{Population mean average horsepower for cars made in the U.S.} \]
\[\mu_2: \text{Population mean average horsepower for cars not made in the U.S.} \]
\[H_0: \mu_1 = \mu_2 \text{ (The country a car is made in is not related to the horsepower.)} \]
\[H_0: \mu_1 > \mu_2 \text{ (claim) (The country a car is made in is related to the horsepower.)} \]
Right-tailed test
Assumptions Check
Both random samples? Yes. Both samples were collected randomly.
Individual cars within the sample and between the samples should be independent? Probably not. The cars may have been made by the same manufacturer. Also the sample size is not significantly smaller than the population size.
At least 30 or normal? No. Both sample sizes were below 30 and skewed right.
T-test Statistic = +2.526
The sample mean average horsepower for the U.S. cars was 2.526 standard errors above the sample mean average horsepower for the cars outside the U.S.
Since the test statistic did fall in the right tail determined by the critical value, the sample mean horsepower for the U.S. cars was significantly higher than the sample mean horsepower for cars made outside the U.S.
P-value = 0.0081 = 0.81%
If the null hypothesis is true, there is a 0.81% probability of getting this sample data or more extreme by random chance.
Since the p-value is lower than the significance level, this sample data is unlikely to have occurred by random chance.
Conclusion
There is significant evidence to support the claim that the population mean average horsepower for cars made in the U.S. is significantly higher than the population mean average horsepower for cars made outside the U.S. This conclusion may not be true since the data did not pass all of the assumptions for inference.
Relationship
The amount of horsepower were significantly different. This indicates that the country a car is made in may be related to the horsepower.

35.
Since these are the same people measured twice, this data is matched pair.
Since this is a controlled experiment we can move beyond a relationship and discuss cause and effect.
\[\mu_d: \text{The population mean average of the differences (Quiz pulse rate} - \text{Lecture pulse rate}) \]
Population 1: Pulse rate of students taking a quiz.
Population 2: Pulse rate of students attending lecture.
\[H_0: \mu_d = 0 \text{ (Taking a quiz or attending lecture does not effect a persons' heartrate.)} \]
Introduction to Statistics for Community College Students
Appendix A: Answer Keys to Odd Exercises Chapter 4

\(H_0: \mu_d > 0 \) (claim) (Taking a quiz or attending lecture does effect a persons' heartrate.)

Tail determined by the simulation and significance level (tails between simulations will vary)

The original sample mean does not fall in the tail determined by the simulation and significance level. The sample data does not significantly disagree with the null hypothesis.

P-value (P-values will vary)

This simulation indicates that the P-value is approximately 0.191 or 19.1%.

If the null hypothesis is true, then there is a 19.1% probability of getting the sample data or more extreme by random chance.

Since the P-value is higher than the significance level, the sample data could have occurred by random chance.

Fail to reject the null hypothesis.

Conclusion

There is not significant evidence to support the claim that heart rates when taking a quiz are significantly higher than when attending a lecture.

Cause and Effect

Since there was no significant difference between the heart rates on a quiz or lecture day, this indicates that taking a quiz or attending a lecture does not effect a persons' heart rate significantly.
37.

These are separate independent groups and are not matched pair.

Since the significance level was not given, we will use a 5% significance level.

\(H_0 : \mu_1 = \mu_2 \) (Gender is not related to heart rate.)

\(H_0 : \mu_1 > \mu_2 \) (claim) (Gender is related to heart rate.)

Right-tailed test

Simulation (Tail determined by the significance level.) (Simulations and tails will vary)

Notice that the difference between the sample means does fall in the right tail determined by the significance level. The sample data does significantly disagree with the null hypothesis.

P-value (P-values from simulations will vary)

In this simulation, the P-value was 0.005 or 0.5%.

If the null hypothesis is true, there is a 0.5% probability of getting the sample data or more extreme by random chance.

Since the P-value is less than the significance level (5%), the sample data was unlikely to have occurred by random chance.

Reject Ho.
Conclusion

There is significant evidence to support the claim that the population mean average heart rate for women is greater than the population mean average heart rate for men.

Relationship

The heart rates for the women and men were significantly different. This indicates that gender may be related to a person’s heart rate.

Section 4B

<table>
<thead>
<tr>
<th>F-test stat</th>
<th>Sentence to explain F-test statistic.</th>
<th>Critical Value</th>
<th>Does the F-test statistic fall in a tail determined by the critical value? (Yes or No)</th>
<th>Does sample data significantly disagree with H_0?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. +5.573</td>
<td>The ratio of the variance between the groups to the variance within the groups is 5.573</td>
<td>+2.886</td>
<td>Yes. In Tail</td>
<td>Yes. Sample data significantly disagrees with H_0</td>
</tr>
<tr>
<td>2. +1.192</td>
<td></td>
<td>+3.113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. +0.664</td>
<td>The ratio of the variance between the groups to the variance within the groups is 0.664</td>
<td>+2.949</td>
<td>No. Not in tail.</td>
<td>No Sample data does not significantly disagree with H_0</td>
</tr>
<tr>
<td>4. +4.415</td>
<td></td>
<td>+3.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. +3.718</td>
<td>The ratio of the variance between the groups to the variance within the groups is 3.718</td>
<td>+4.117</td>
<td>No. Not in tail.</td>
<td>No Sample data does not significantly disagree with H_0</td>
</tr>
<tr>
<td>6. +0.991</td>
<td></td>
<td>+2.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. +2.652</td>
<td>The ratio of the variance between the groups to the variance within the groups is 2.652</td>
<td>+1.875</td>
<td>Yes. In Tail</td>
<td>Yes. Sample data significantly disagrees with H_0</td>
</tr>
<tr>
<td>8. +1.585</td>
<td></td>
<td>+3.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. +2.447</td>
<td>The ratio of the variance between the groups to the variance within the groups is 2.447</td>
<td>+2.798</td>
<td>No. Not in tail.</td>
<td>No Sample data does not significantly disagree with H_0</td>
</tr>
<tr>
<td>10. +8.133</td>
<td></td>
<td>+2.891</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-value Proportion</th>
<th>P-value %</th>
<th>Sentence to explain the P-value</th>
<th>Sig Level %</th>
<th>Sig level Prop</th>
<th>If H_0 is true, could the sample data occur by random chance or is it unlikely?</th>
<th>Reject H_0 or Fail to reject H_0?</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 0.186</td>
<td>18.6%</td>
<td>If H_0 is true there is a 18.6% probability of getting the sample data or more extreme by random chance.</td>
<td>10%</td>
<td>0.10</td>
<td>Could be random chance</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>12. 0.0042</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise</td>
<td>Value</td>
<td>Probability (%)</td>
<td>Description</td>
<td>Significance Level</td>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>2.59×10^{-4}</td>
<td>0.0259%</td>
<td>If H_0 is true there is a 0.0259% probability of getting the sample data or more extreme by random chance.</td>
<td>5%</td>
<td>Unlikely to be random chance</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>14.</td>
<td>0.006</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>0.353</td>
<td>35.3%</td>
<td>If H_0 is true there is a 35.3% probability of getting the sample data or more extreme by random chance.</td>
<td>5%</td>
<td>Could be random chance</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>16.</td>
<td>0</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>0.041</td>
<td>4.1%</td>
<td>If H_0 is true there is a 4.1% probability of getting the sample data or more extreme by random chance.</td>
<td>5%</td>
<td>Unlikely to be random chance</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>18.</td>
<td>0.274</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>1.04×10^{-8}</td>
<td>0.00000104%</td>
<td>If H_0 is true there is a 0.00000104% probability of getting the sample data or more extreme by random chance.</td>
<td>1%</td>
<td>Unlikely to be random chance</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>20.</td>
<td>0.067</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. The variance between the groups is calculated by taking the sample mean from each group and subtracting the mean of all the numbers in all the groups. They then square the differences and add up the sum of squares. The sum of squares between is then divided by the degrees of freedom between to get the variance between.

The variance within the groups takes each individual number in each data set and subtracts it from the sample mean of that group. They then square the differences and add up the sum of squares. The sum of squares within is then divided by the degrees of freedom within to get the variance within.

The F-test statistic is calculated by taking the variance between the groups and dividing by the variance within the groups.

23.

If the variance between the groups were about the same as the variance within the ratio between the variances would be close to one. This is a small F-test statistic and would indicate that the sample data does not significantly disagree with the null hypothesis.

25.

$H_0 : \mu_1 = \mu_2 = \mu_3$ (season is not related to the weight of bears)

$H_A : \text{at least one is } \neq$ (season is related to the weight of bears) CLAIM

Assumptions

Random? Yes. Given in the problem.

Individuals between the groups and within the groups are independent? Probably Yes. As long as the bears were taken from different areas and were not the same bear measured multiple times.

All sample sizes at least 30 or normal? Yes. All the sample sizes were below 30 (13,24,17) but the histograms all looked normal.

Standard Deviations close? No. The standard deviation for the summer bears (22.463) is more than twice as large as for the spring bears (48.017).

F-test statistic $= 13.55345$
The ratio of the variance between the groups to the variance within the groups is 13.55345. This also indicates that the variance between the groups is 13.55345 times larger than the variance within the groups.

Since the F-test statistic falls in the tail determined by the critical value 5.0472, the sample data does significantly disagree with the null hypothesis. This also implies that the variance between the groups (22769.64632) is significantly higher than the variance within the groups (1679.98954).

P-value = 0.00002 = 0.002%

If the null hypothesis is true and the season is not related to the weights of the bears, then there is a 0.002% probability of getting this sample data or more extreme by random chance.

Since the P-value is lower than the significance level, the sample data was unlikely to have occurred because of sampling variability (random chance).

Reject the null hypothesis

Conclusion: There is significant evidence to support the claim that the season is related to the weight of bears. This conclusion is in question since the sample data did not pass all of the assumptions for inference.

The sample data indicates that the categorical variable (season) is probably related to the quantitative variable (weight). However, the data did not pass all of the assumptions for inference.

27.

\[H_0 : \mu_1 = \mu_2 = \mu_3 = \mu_4 \quad \text{(Political viewpoint is not related to the amount of alcohol consumed)} \]

\[H_A : \text{at least one is } \neq \quad \text{(Political viewpoint is not related to the amount of alcohol consumed)} \]

Assumptions

Random or Representative? Yes. Even though the data was not random, a census of one semester of students may be representative of all pre-stat students from all semesters.

Individuals between the groups and within the groups are independent? Probably not. Students came from the same Math 075 classes and may be related.

All sample sizes at least 30 or normal? Yes. All of the histograms looked skewed right and were not normal. However, all of the sample sizes were above 30 (198, 111, 102, 90).

Standard Deviations close? Yes. None of the standard deviations were more than twice as large as any other.

F-test statistic = 0.89597

The ratio of the variance between the groups to the variance within the groups is 0.89597. This also indicates that the variance between the groups is very close to the variance within the groups.

Since the F-test statistic did NOT fall in the tail determined by the critical value 2.6228, the sample data does NOT significantly disagree with the null hypothesis. This also implies that the variance between the groups (8.48046) is NOT significantly higher than the variance within the groups (9.46512).

P-value = 0.44306 = 44.306%

If the null hypothesis is true and political views are not related to consuming alcohol, then there is a 44.306% probability of getting this sample data or more extreme by random chance.

Since the P-value is higher than the significance level, the sample data could have occurred simply because of sampling variability (random chance).

Fail to reject the null hypothesis
Conclusion: There is NOT significant evidence to reject the claim that political views are not related to consuming alcohol. This conclusion is in question since the sample data did not pass all of the assumptions for inference.

The sample data indicates that the categorical variable (political view) is probably not related to the quantitative variable (alcohol). However, the data did not pass all of the assumptions for inference.

29.

\(H_0 : \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 \) (Country is NOT related to mpg)

\(H_A : \text{at least one is } \neq \) (Country is related to mpg) CLAIM

<table>
<thead>
<tr>
<th>Statistics</th>
<th>U.S.</th>
<th>Japan</th>
<th>Germany</th>
<th>Sweden</th>
<th>France</th>
<th>Italy</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>22</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Mean</td>
<td>23.0</td>
<td>29.6</td>
<td>27.1</td>
<td>19.3</td>
<td>16.2</td>
<td>37.3</td>
<td>24.8</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>6.1</td>
<td>4.5</td>
<td>5.7</td>
<td>3.3</td>
<td>NaN</td>
<td>NaN</td>
<td>6.5</td>
</tr>
</tbody>
</table>

F-test Statistic = 3.406

The ratio of the variance between the groups to the variance within the groups is 3.406.

Critical Value Calculation

Critical Value = 3.079 (Answers were vary)

Since the test statistic 3.406 falls in the tail determined by the critical value 3.079, the sample data significantly disagrees with the null hypothesis.
P-value Calculation

P-value = 0.0058 or 0.58% (Answers will vary)

Since the p-value was less than our significance level, it is unlikely for our sample data to have occurred because of sampling variability.

Since the p-value was less than our significance level, we will reject the null hypothesis.

Conclusion: There is significant evidence to support the claim that the country a car is made in is related to the cars’ gas mileage.

The variance between the groups (110.19) is significantly greater than the variance within the groups (32.35). We know it is significant since our F-test statistic fell in the tail determined by the critical value.

The P-value was lower than the significance level. This indicates that the categorical variable (country) is related to the quantitative variable (mpg).

31. $H_0 : \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ (Country is NOT related to horsepower) CLAIM

$H_A : \text{at least one is } \neq$ (Country is related to horsepower)
F-test Statistic = 3.099
The ratio of the variance between the groups to the variance within the groups is 3.099.

Critical Value Calculation

Randomization Dotplot of F-statistic, Null hypothesis: \(\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 \)

Critical Value = 1.891 (Answers were vary)

Since the test statistic 3.099 falls in the tail determined by the critical value 1.891, the sample data significantly disagrees with the null hypothesis.
P-value Calculation

P-value = 0.012 or 1.2% (Answers will vary)

Since the p-value was less than our significance level, it is unlikely for our sample data to have occurred because of sampling variability.

Since the p-value was less than our significance level, we will reject the null hypothesis.

Conclusion: There is significant evidence to reject the claim that the country a car is made in is not related to the cars’ horsepower.

The variance between the groups (1688.2) is significantly greater than the variance within the groups (544.8). We know it is significant since our F-test statistic fell in the tail determined by the critical value.

The P-value was lower than the significance level. This indicates that the categorical variable (country) is related to the quantitative variable (horsepower).

33.

\[H_0 : \mu_1 = \mu_2 = \mu_3 = \mu_4 \] (State is NOT related to price of home)

\[H_A : \text{at least one is } \neq \] (State is related to price of home) CLAIM
F-test Statistic = 2.747

The ratio of the variance between the groups to the variance within the groups is 2.747.

Critical Value Calculation

Critical Value = 1.925 (Answers were vary)

Since the test statistic 2.747 falls in the tail determined by the critical value 1.925, the sample data significantly disagrees with the null hypothesis.
P-value Calculation

P-value = 0.023 or 2.3% (Answers will vary)

Since the p-value was less than our significance level, it is unlikely for our sample data to have occurred because of sampling variability.

Since the p-value was less than our significance level, we will reject the null hypothesis.

Conclusion: There is significant evidence to support the claim that the location of a home (state) is related to the price of a home.

The variance between the groups (1240611.5) is significantly greater than the variance within the groups (451576.9). We know it is significant since our F-test statistic fell in the tail determined by the critical value.

The P-value was lower than the significance level. This indicates that the categorical variable (state) is related to the quantitative variable (price).
Section 4C

<table>
<thead>
<tr>
<th>Z-test stat</th>
<th>Sentence to explain Z-test statistic.</th>
<th>Critical Value</th>
<th>Does the Z-test statistic fall in a tail determined by a critical value? (Yes or No)</th>
<th>Does sample data significantly disagree with (H_0)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. -1.835</td>
<td>The sample proportion from group 1 was 1.835 standard errors below the sample proportion from group 2.</td>
<td>±1.645</td>
<td>Yes. In Tail</td>
<td>Yes. Sig. disagree</td>
</tr>
<tr>
<td>2. +0.974</td>
<td></td>
<td>+2.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. -1.226</td>
<td>The sample proportion from group 1 was 1.226 standard errors below the sample proportion from group 2.</td>
<td>-1.96</td>
<td>No. Not in tail.</td>
<td>No. Does not sig disagree</td>
</tr>
<tr>
<td>4. -3.177</td>
<td></td>
<td>±1.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. +2.244</td>
<td>The sample proportion from group 1 was 2.224 standard errors above the sample proportion from group 2.</td>
<td>+1.645</td>
<td>Yes. In Tail</td>
<td>Yes. Sig. disagree</td>
</tr>
<tr>
<td>6. +1.448</td>
<td></td>
<td>±2.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. -0.883</td>
<td>The sample proportion from group 1 was 0.883 standard errors below the sample proportion from group 2.</td>
<td>-2.576</td>
<td>No. Not in tail.</td>
<td>No. Does not sig disagree</td>
</tr>
<tr>
<td>8. +1.117</td>
<td></td>
<td>+1.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. +2.139</td>
<td>The sample proportion from group 1 was 2.139 standard errors above the sample proportion from group 2.</td>
<td>±2.576</td>
<td>No. Not in tail.</td>
<td>No. Does not sig disagree</td>
</tr>
<tr>
<td>10. -0.199</td>
<td></td>
<td>-1.645</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-value Proportion</th>
<th>P-value %</th>
<th>Sentence to explain the P-value</th>
<th>Significance Level %</th>
<th>Significance level Proportion</th>
<th>If (H_0) is true, could the sample data occur by random chance or is it unlikely?</th>
<th>Reject (H_0) or Fail to reject (H_0)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 0.728</td>
<td>72.8%</td>
<td>If (H_0) is true, there is a 72.8% probability of getting the sample data or more extreme because of sampling variability.</td>
<td>10%</td>
<td>0.10</td>
<td>Could be random chance</td>
<td>Fail to reject (H_0)</td>
</tr>
<tr>
<td>12. 0.0421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. (2.11 \times 10^{-4})</td>
<td>0.0211%</td>
<td>If (H_0) is true, there is a 0.0211% probability of getting the sample data or more extreme because of sampling variability.</td>
<td>5%</td>
<td>0.05</td>
<td>Unlikely to be random chance</td>
<td>Reject (H_0)</td>
</tr>
<tr>
<td>14. 0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. 0.176</td>
<td>17.6%</td>
<td>If (H_0) is true, there is a 17.6% probability of getting the sample data or more extreme because of sampling variability.</td>
<td>5%</td>
<td>0.05</td>
<td>Could be random chance</td>
<td>Fail to reject (H_0)</td>
</tr>
<tr>
<td>16. 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17. 0.0628 0.0628% If H_0 is true, there is a 0.0628% probability of getting the sample data or more extreme because of sampling variability. 5% 0.05 Could be random chance Fail to reject H_0

18. 0.277

19. 3.04 × 10^{-6} 0.000304% If H_0 is true, there is a 0.000304% probability of getting the sample data or more extreme because of sampling variability. 1% 0.01 Unlikely to be random chance Reject H_0

21. A random sample is selecting people randomly from a population. It is used to help eliminate bias and make the sample data more representative of the population. Random assignment is separating a group of people in an experiment into two or more groups randomly. This makes the groups alike, controls confounding variables and helps prove cause and effect.

23. Two-population Proportion Assumptions (Independent groups for Experiment)

- The two categorical samples should be randomly assigned from the people or objects in the experiment.
- Data values within each sample should be independent of each other.
- Data values between the samples should be independent of each other.
- Both samples should be at least ten successes and at least ten failures.

25. To prove cause and effect, we would need to set up a controlled experiment. Randomly assign people in the experiment into two groups and make sure they meet the assumptions. The groups should be alike in order to control confounding variables. If the P-value is low and the groups are significantly different, this may indicate cause and effect.

27.

π_1: Population proportion of marijuana users that use other drugs

π_2: Population proportion of non-marijuana users that use other drugs

$H_0: \pi_1 = \pi_2$ (Using marijuana is not related to using other drugs)

$H_0: \pi_1 > \pi_2$ (Using marijuana is related to using other drugs) CLAIM

Assumptions

Random Samples? Yes both samples were collected randomly.

Individuals within and between the samples are independent? Probably yes. These were small random samples from a large population. The marijuana and non-marijuana users are unlikely to be related.

Both samples have at least 10 success and at least 10 failures? Yes. Both samples passed. Sample 1 had 87 success and 213 – 87 = 126 failures. Sample 2 had 26 success and 219 – 26 = 193 failures.

Z-test statistic = 6.850

The sample proportion for group 1 was 6.850 standard errors above the sample proportion for group 2.
Introduction to Statistics for Community College Students
Appendix A: Answer Keys to Odd Exercises Chapter 4

The sample proportions are significantly different since the test statistic fell in the tail determined by the critical value.

P-value = 0.0000000000036839 = 0.00000000036839% \approx 0%

If the null hypothesis is true, then there is about a 0% probability of getting the sample data or more extreme because of sampling variability.

The P-value is close to zero, so it is very unlikely that the sample data occurred because of sampling variability.

Since the P-value is less than the significance level, we will reject the null hypothesis.

Conclusion: There is significant evidence to support the claim that the proportion of marijuana users that use other drugs is higher than for non-marijuana users. This also indicates that using marijuana is related to using other drugs.

29.

\(\pi_1 \): Population proportion of married people that are unhappy

\(\pi_2 \): Population proportion of non-married people that are unhappy

\(H_0 : \pi_1 = \pi_2 \) (Being married is NOT related to being unhappy)

\(H_0 : \pi_1 < \pi_2 \) (Being married is related to being unhappy) CLAIM

Assumptions

Random Samples? Yes both samples were collected randomly.

Individuals within and between the samples are independent? Probably yes. These were small random samples from a large population. The married, single and divorced people are unlikely to be related.

Both samples have at least 10 success and at least 10 failures? Yes. Both samples passed. Sample 1 had 74 success and 200 \(- 74 = 126\) failures. Sample 2 had 97 success and 200 \(- 97 = 103\) failures.

Z-test statistic = \(-2.325\)

The sample proportion for group 1 was 2.325 standard errors below the sample proportion for group 2.

The sample proportions are significantly different since the test statistic fell in the tail determined by the critical value.

P-value = 0.0100 = 1.0%

If the null hypothesis is true, then there is about a 1.0% probability of getting the sample data or more extreme because of sampling variability.

The P-value is less than the significance level, so it is unlikely that the sample data occurred because of sampling variability.

Since the P-value is less than the significance level, we will reject the null hypothesis.

Conclusion: There is significant evidence to support the claim that married people have a lower percentage of unhappiness than non-married people. This also indicates that being married or not is related to being unhappy.

31.

\(\pi_1 \): Population proportion of women with a normal BMI

\(\pi_2 \): Population proportion of men with a normal BMI

\(H_0 : \pi_1 = \pi_2 \) (Gender is NOT related to having a normal BMI)

\(H_0 : \pi_1 < \pi_2 \) (Gender is related to having a normal BMI) CLAIM
The sample proportion difference is \(-0.106\).

Tail determined by the simulation and the significance level. (Simulations and tails will vary)

Notice that the original sample difference of \(-0.106\) does fall in the tail determined by the significance level and the simulation. This implies that the sample proportion for women was significantly lower than the sample proportion for men.
P-value determined by the simulation and original sample difference

P-value = 0 = 0% (answers will vary)

If the null hypothesis is true, there is a 0% probability of getting this sample data or more extreme because of sampling variability.

It is very unlikely that this sample data occurred because of sampling variability.

Since the P-value is less than the significance level, we will reject the null hypothesis.

Conclusion: There is significant evidence to support the claim that percentage of women with normal BMI is lower than the percentage of men. This also implies that having a normal BMI is related to gender.

33.

\(\pi_1 \): Population proportion of smoking women that are able to get pregnant

\(\pi_2 \): Population proportion of non-smoking women that are able to get pregnant

\(H_0 : \pi_1 = \pi_2 \) (Smoking is NOT related to getting pregnant)

\(H_0 : \pi_1 < \pi_2 \) (Smoking is related to getting pregnant) CLAIM

Original Sample

<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
<th>Sample Size</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>38</td>
<td>135</td>
<td>0.281</td>
</tr>
<tr>
<td>Group 2</td>
<td>206</td>
<td>543</td>
<td>0.379</td>
</tr>
<tr>
<td>Group 1-Group 2</td>
<td>-168</td>
<td>n/a</td>
<td>-0.098</td>
</tr>
</tbody>
</table>

The sample proportion difference is -0.098.
Tail determined by the simulation and the significance level. (Simulations and tails will vary)

Notice that the original sample difference of -0.098 does fall in the tail determined by the significance level and the simulation. This implies that the sample proportion for smokers was significantly lower than the sample proportion for non-smokers.

P-value determined by the simulation and original sample difference

Notice that the original sample difference of -0.098 does fall in the tail determined by the significance level and the simulation. This implies that the sample proportion for smokers was significantly lower than the sample proportion for non-smokers.

P-value = $0.013 = 1.3\%$ (answers will vary)

If the null hypothesis is true, there is a 1.3% probability of getting this sample data or more extreme because of sampling variability.

It is very unlikely that this sample data occurred because of sampling variability.

Since the P-value is less than the significance level, we will reject the null hypothesis.
Conclusion: There is significant evidence to support the claim that percentage of smokers that are able to get pregnant is lower than the percentage of non-smokers. This also implies that getting pregnant is related to smoking or not.

Section 4D

<table>
<thead>
<tr>
<th>χ²-test stat</th>
<th>Sentence to explain χ²-test statistic.</th>
<th>Critical Value</th>
<th>Does the χ²-test statistic fall in a tail determined by the critical value? (Yes or No)</th>
<th>Does sample data significantly disagree with (H_0)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. +28.573</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 28.573.</td>
<td>+9.117</td>
<td>Yes. In tail.</td>
<td>Yes. Significantly disagrees.</td>
</tr>
<tr>
<td>2. +1.226</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. +2.137</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 2.137</td>
<td>+5.521</td>
<td>No. Not in tail.</td>
<td>No. Does not significantly disagree.</td>
</tr>
<tr>
<td>5. +3.718</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 3.718</td>
<td>+7.182</td>
<td>No. Not in tail.</td>
<td>No. Does not significantly disagree.</td>
</tr>
<tr>
<td>6. +0.891</td>
<td></td>
<td>+3.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. +51.652</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 51.652</td>
<td>+14.881</td>
<td>Yes. In tail.</td>
<td>Yes. Significantly disagrees.</td>
</tr>
<tr>
<td>8. +1.185</td>
<td></td>
<td>+4.181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. +2.442</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 2.442</td>
<td>+8.619</td>
<td>No. Not in tail.</td>
<td>No. Does not significantly disagree.</td>
</tr>
<tr>
<td>10. +14.133</td>
<td></td>
<td>+10.336</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-value Proportion</th>
<th>P-value %</th>
<th>Sentence to explain P-value</th>
<th>Significance Level %</th>
<th>Significance level Proportion</th>
<th>If (H_0) is true, could the sample data occur by random chance or is it unlikely?</th>
<th>Reject (H_0) or Fail to reject (H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>0.0006</td>
<td>0.06%</td>
<td>If (H_0) is true, there is a 0.06% probability of getting the sample data or more extreme by sampling variability.</td>
<td>10%</td>
<td>0.1 Unlikely</td>
<td>Reject (H_0)</td>
</tr>
</tbody>
</table>
Appendix A: Answer Keys to Odd Exercises Chapter 4

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>0.042</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>9.16×10^{-7}</td>
<td>0.0000916%</td>
<td>If H_0 is true, there is a 0.0000916% probability of getting the sample data or more extreme by sampling variability.</td>
<td>5%</td>
<td>0.05</td>
</tr>
<tr>
<td>14.</td>
<td>0.739</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>0.0035</td>
<td>0.35%</td>
<td>If H_0 is true, there is a 0.35% probability of getting the sample data or more extreme by sampling variability.</td>
<td>5%</td>
<td>0.05</td>
</tr>
<tr>
<td>16.</td>
<td>0</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>0.419</td>
<td>41.9%</td>
<td>If H_0 is true, there is a 41.9% probability of getting the sample data or more extreme by sampling variability.</td>
<td>5%</td>
<td>0.05</td>
</tr>
<tr>
<td>18.</td>
<td>0.0274</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>3.77×10^{-3}</td>
<td>0.00377%</td>
<td>If H_0 is true, there is a 0.00377% probability of getting the sample data or more extreme by sampling variability.</td>
<td>1%</td>
<td>0.01</td>
</tr>
<tr>
<td>20.</td>
<td>0.067</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. Goodness of Fit Degrees of Freedom = $K - 1$

(K is the number of groups)

23. For each group, the computer subtracts the expected count (Ho) from the observed count ($Sample$). It then squares the differences to get rid of negatives. It then divides each square by the expected count. Lastly, it adds up this calculation for each group to get the total chi-squared.

25. If the observed sample counts and the expected counts from the Ho were close, the differences would be very small. That would cause the overall chi-squared to be small.
27.

\[H_0: \pi_{\text{bike}} = 0.01, \pi_{\text{carpool}} = 0.1, \pi_{\text{drive alone}} = 0.8, \]
\[\pi_{\text{dropped off}} = 0.05, \pi_{\text{public transp}} = 0.02, \pi_{\text{walk}} = 0.02 \]

\[H_A: \text{At least one proportion is } \neq \text{ (CLAIM)} \]

Degrees of freedom = 6 – 1 = 5

![Original Sample]

\(n = 332, \chi^2 = 3.816 \)

Chi-squared test stat = 3.816

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 3.816.

Critical value and Tail calculation from simulation and significance level (answers will vary)

![Randomization Dotplot of \(\chi^2 \), Null Hypothesis]

Critical Value = 11.523 (answers will vary)

The test statistic of 3.816 does not fall in the tail determined by the critical value. So the sample data does not significantly disagree with the null hypothesis. Also the observed sample counts are not significantly different than the expected counts from the null hypothesis.
P-value calculation from the test statistic and simulation (answers will vary)

P-value = 0.575 = 57.5% (answers will vary)

If the null hypothesis was true, then there is a 57.5% probability of getting the sample data or more extreme by sampling variability.

The P-value is much higher than the 5% significance level. So this sample data could have occurred simply by sampling variability.

Fail to reject the null hypothesis.

Conclusion: There is not significant evidence to support the claim that the percentages listed by the employee are wrong. They might be correct, but we do not have evidence.

This problem is the second type of goodness of fit test and is not designed to explore relationships. The P-value in this case was trying to test the accuracy of the given percentages, not tell if the variables are related. The percentages being so vastly different does indicate that type of transportation is probably related to the percentage of people that use that type.

29.

\[H_0 : \pi_{\text{caucasian}} = 0.54, \pi_{\text{african american}} = 0.18, \pi_{\text{hispanic american}} = 0.12, \pi_{\text{asian american}} = 0.15, \pi_{\text{other}} = 0.01 \]

\[H_A : \text{At least one proportion is } \neq \text{ (CLAIM)} \]

Degrees of freedom = 5 – 1 = 4
Chi-squared test stat = 357.362

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 357.362.

Critical value and Tail calculation from simulation and significance level (answers will vary)

Critical Value = 13.831 (answers will vary)

The test statistic of 357.362 is way out in the far tail determined by the critical value. So the sample data significantly disagrees with the null hypothesis. Also the observed sample counts are significantly different than the expected counts from the null hypothesis.
P-value calculation from the test statistic and simulation (answers will vary)

![Randomization Dotplot of χ^2](image)

P-value = 0 = 0% (answers may vary)

If the null hypothesis was true, then there is a 0% probability of getting the sample data or more extreme by sampling variability.

The P-value is much lower than the 1% significance level. It is highly unlikely for this sample data to have occurred simply by sampling variability.

Reject the null hypothesis.

Conclusion: There is significant evidence to support the claim that the juries from this county are not representing the demographic.

This problem is the second type of goodness of fit test and is not designed to explore relationships. The P-value in this case was trying to test the accuracy of the given percentages, not tell if the variables are related. The percentages being so vastly different does indicate that race is most likely related to the percentages.

31.

$H_0 : \pi_{\text{monday}} = \pi_{\text{tuesday}} = \pi_{\text{wednesday}} = \pi_{\text{thursday}} = \pi_{\text{friday}} = \pi_{\text{saturday}} = \pi_{\text{sunday}}$

$H_A : \text{At least one proportion is } \neq \text{ (CLAIM)}$

Degrees of freedom = 7 – 1 = 6

Chi-squared test stat = 7.5478

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 7.5478.

Critical Value = 16.8119

The test statistic of 7.5478 does not fall in the tail determined by the critical value. So the sample data does NOT significantly disagrees with the null hypothesis. Also the observed sample counts are NOT significantly different than the expected counts from the null hypothesis.

P-value = 0.2731 = 27.31% (answers may vary)
If the null hypothesis was true, then there is a 27.31% probability of getting the sample data or more extreme by sampling variability.

The P-value is higher than the 1% significance level. This sample data could have occurred simply by sampling variability.

Fail to reject the null hypothesis.

Conclusion: There is not significant evidence to support the claim that the probability of having a fatal car accident is different on the various days of the week. This also implies that the day of the week is probably not related to having a fatal car accident.

Section 4E

1. If conditional proportions are significantly different from one group to another, it indicates that the categorical variable that decides the groups is probably related to the categorical variable that the proportions came from.

2. If conditional proportions are almost the same from one group to another, it indicates that the categorical variable that decides the groups is probably not related to the categorical variable that the proportions came from.

#3-8

3. At the end of yes smoking row in the overall chart we see the answer is 0.089 or 8.9%. We could also have calculated this by dividing the amount of smokers (29) by the grand total (327).

5. In the overall chart where no smoking and carpool meet, we see the answer is 0.086 or 8.6%. We could also have calculated this by dividing the cell where no smoking and carpool meet (28) by the grand total (327).

7. We will use the union “or” formula. These individual proportions we can get from the overall chart.

\[
P(\text{no smoke OR dropped off}) = P(\text{no smoke}) + P(\text{dropped off}) - P(\text{no smoke and dropped off}) = 0.911 + 0.055 - 0.052 = 0.914 \text{ or 91.4%}
\]
9. Since the conditions are smoking and not smoking and they are a row, we will use the row chart for conditional %.

\[P(\text{carpool given smoke}) = 0.069 = 6.9\% \]. We can also calculate this by dividing the # of carpool smokers (2) by the total number of smokers (29).

\[P(\text{carpool given not smoke}) = 0.094 = 9.4\% \]. We can also calculate this by dividing the # of carpool non-smokers (28) by the total number of non-smokers (298).

These appear significantly different. (36% increase) So smoking or not does appear to be related to carpooling.

#11-16

Rows: text and drive or not

Columns: car accident or not
11. At the end of yes texting and driving row in the overall chart we see the answer is 0.399 or 39.9%. We can also calculate this by dividing the total number of texting while driving (132) by the grand total (331).

13. In the overall chart where yes text and drive and yes car accident meet, we see the answer is 0.130 or 13.0%. We can also calculate this by dividing the total number of texting while driving car accidents (43) by the grand total (331).

15. We will use the union “or” formula. These individual proportions we can get from the overall chart.

\[
P(\text{yes text drive OR no car accident}) = P(\text{yes text drive}) + P(\text{no car accident}) - P(\text{yes text drive AND no car accident}) = 0.399 + 0.749 - 0.269 = 0.879 \text{ or } 87.9\%
\]

#17-18
17. Since the conditions are text & drive and not text & drive are rows, we will use the row chart.

\[P(\text{car accident given text&drive}) = 0.326 = 32.6\% \]

We can also calculate this by dividing the number of text and drive car accidents (43) by the total number of texting and driving (132).

\[P(\text{car accident given not text&drive}) = 0.201 = 20.1\% \]

We can also calculate this by dividing the number of no text and drive car accidents (40) by the total number of not texting and driving (199).

These appear significantly different. (62.2\% increase) So being in a car accident does appear to be related to texting and driving or not.

#19-24

19. At the end of yes tattoo row in the overall chart we see the answer is 0.261 or 26.1\%. We can also calculate this by dividing the total number of students with tattoos (85) by the grand total (326).

21. In the overall chart where Facebook and no tattoo meet, we see the answer is 0.172 or 17.2\%. We can also calculate this by dividing the number of Facebook no tattoo students (56) by the grand total (326).

23. We will use the union “or” formula. These individual proportions we can get from the overall chart.

\[
P (\text{yes tattoo OR Instagram}) = P(\text{yes tattoo}) + P(\text{Instagram}) – P(\text{yes tattoo AND Instagram}) =
\]

\[= 0.261 + 0.38 – 0.126 = 0.515 \text{ or } 51.5\%\]
25. Since the conditions of tattoo and no tattoo are in a row, we will use the row chart for conditional %.

\[P(\text{Twitter given tattoo}) = 0.094 = 9.4\%. \] We can also calculate this by dividing the number of Twitter with tattoo students (8) by the total number of students with tattoo (85).

\[P(\text{Twitter given no tattoo}) = 0.087 = 8.7\%. \] We can also calculate this by dividing the number of Twitter with no tattoo students (21) by the total number of students with no tattoo (241).

These appear to be relatively close. (Only 8% increase) So having a tattoo or not does not appear to be related to liking Twitter.
27. At the end of the Germany column in the overall chart we see the answer is 0.132 or 13.2%. We could also calculate this by dividing the total number of cars from Germany (5) by the grand total (38).

29. In the overall chart where Japan and four cylinders meet, we see the answer is 0.158 or 15.8%. We could also have calculated this by dividing the number of four cylinder cars from Japan (6) by the grand total (38).

31. We will use the union “or” formula. These individual proportions we can get from the overall chart.

\[P(\text{Germany OR Six Cylinders}) = P(\text{Germany}) + P(\text{Six Cylinders}) - P(\text{Germany AND Six Cylinders}) = \]

\[= 0.132 + 0.263 - 0 = 0.395 \text{ or } 39.5\% \]

#33-34
33. Since the conditions of Japan and Germany are in columns, we will use the column chart for conditional %.

\[P(\text{Four Cylinders given Japan}) = 0.857 = 85.7\% \]. We can also calculate this by dividing the number of four cylinder cars from Japan (6) by the total number of cars from Japan (7).

\[P(\text{Four Cylinders given Germany}) = 0.8 = 80\% \]. We can also calculate this by dividing the number of four cylinder cars from Germany (4) by the total number of cars from Germany (5).

These appear to be relatively close. (Only 7.1% increase)
So the country (Japan and Germany) is probably not related to having four cylinders.

Section 4F

<table>
<thead>
<tr>
<th>(\chi^2)-test stat</th>
<th>Sentence to explain (\chi^2)-test statistic.</th>
<th>Critical Value</th>
<th>Does the (\chi^2)-test statistic fall in a tail determined by the critical value? (Yes or No)</th>
<th>Does sample data significantly disagree with (H_0)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. +1.573</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 1.573.</td>
<td>+4.117</td>
<td>No. Not in tail.</td>
<td>No. Does not significantly disagree.</td>
</tr>
<tr>
<td>2. +6.226</td>
<td></td>
<td>+5.118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. +2.144</td>
<td>The sum of the averages of the squares of the differences between the observed sample values and the expected values from the null hypothesis is 2.144.</td>
<td>+4.121</td>
<td>No. Not in tail.</td>
<td>No. Does not significantly disagree.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.</td>
<td>+3.415</td>
<td>+5.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>+0.972</td>
<td>+4.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>+11.185</td>
<td>+5.181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>+1.133</td>
<td>+8.336</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P-value Proportion</th>
<th>P-value %</th>
<th>Sentence to explain the P-value</th>
<th>Significance Level %</th>
<th>Significance level Proportion</th>
<th>If H_0 is true, could the sample data occur by random chance or is it unlikely?</th>
<th>Reject H_0 or Fail to reject H_0?</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>0.263</td>
<td>26.3%</td>
<td>If H_0 is true, there is a 26.3% probability of getting the sample data or more extreme by sampling variability</td>
<td>10%</td>
<td>0.1</td>
<td>Could be</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>12.</td>
<td>0.0042</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>5.22×10^{-4}</td>
<td>0.0522%</td>
<td>If H_0 is true, there is a 0.0522% probability of getting the sample data or more extreme by sampling variability</td>
<td>5%</td>
<td>0.05</td>
<td>Unlikely</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>14.</td>
<td>0.0639</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>0</td>
<td>0%</td>
<td>If H_0 is true, there is a 0% probability of getting the sample data or more extreme by sampling variability</td>
<td>5%</td>
<td>0.05</td>
<td>Unlikely</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>16.</td>
<td>0.539</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>0.0419</td>
<td>4.19%</td>
<td>If H_0 is true, there is a 4.19% probability of getting the sample data or more extreme by sampling variability</td>
<td>5%</td>
<td>0.05</td>
<td>Unlikely</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>18.</td>
<td>0.0027</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19. 7.73×10^{-8} 0.00000773% If H_0 is true, there is a 0.00000773% probability of getting the sample data or more extreme by sampling variability 1% 0.01 Unlikely Reject H_0

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>0.674</td>
<td></td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21.

To perform a categorical association test in Statcato, follow the following steps.

If you have a contingency table, then type the contingency table in data sheet. Column titles will be in the gray where it says VAR. Click on the "statistics" menu and then click "multinomial experiments". Then click on "chi-square contingency table". Click on the columns that contain your counts in your contingency table and press "add to list". Then put in the significance level and press "OK".

If you have two raw categorical data sets, copy and paste them into the data sheet. Titles should be in the gray where it says VAR. Click on the "statistics" menu and then click "Cross Tabulation and Chi-square". Click on the row and column, the significance level and then press "OK".

23.

Categorical Association Test Assumptions (one random sample)

- The categorical sample or samples should be collected randomly or be representative of the population.
- Data values within each sample should be independent of each other.
- The expected counts from the null hypothesis should be at least five.

25.

Expected Counts = \(\frac{(\text{Row Total} \times \text{Column Total})}{\text{Grand Total}} \)

27.

If the expected counts from the null hypothesis are close to the observed sample counts, then the differences between them will be close to zero. This will make the chi-squared test statistic very small and not fall in the tail. This would indicate that the sample data (observed counts) does not significantly disagree with the null hypothesis (expected counts).

29.

H_0 : Blood type is not related to the Rh

H_A : Blood type is related to the Rh (CLAIM)

Assumptions

Random? Yes. Given

Individuals Independent? Probably. Since this was a small random sample from a very large population.

Expected Counts at least 5? No. (The expected counts were 36.03, 23.0, 16.1, 85.87, 10.97, 7.0, 4.9, and 26.13)

Notice one of the expected counts (4.9) was below 5.

\(\chi^2 \) Test Statistic = 8.5522

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 8.5522.
The sample data significantly disagrees with the null hypothesis since the test statistic falls in the right tail determined by the critical value 6.2514. This also indicates that the observed sample counts were significantly different than the expected counts.

P-value = 0.0359 = 3.59%

If the null hypothesis is true, there is a 3.59% probability of getting the sample data or more extreme by sampling variability.

The P-value is lower than the 10% significance level.

It is unlikely for this data to have occurred by sampling variability.

Reject H_0.

If the sample data had met the assumptions, then the conclusion would be: There is significant evidence to support the claim that a persons' blood type is related to the Rh. However, this data did not meet all of the assumptions, so evidence is in question.

The P-value is low, indicating that blood type and Rh are likely to be related. However, our data did not meet all of the assumptions, so our evidence for this is in question.

31.

H_0 : Health is not related to education

H_A : Health is related to education (CLAIM)

Assumptions

Random? Yes. Given

Individuals Independent? Probably. Since this was a small random sample from a very large population.

Expected Counts at least 5? Yes. (The expected counts were 148.64, 249.76, 106.91, 29.70, 502.31, 844.04, 361.29, 100.36, 77.24, 129.78, 55.55, 15.43, 161.42, 271.23, 116.10, 32.25, 86.40, 145.19, 62.15, and 17.26) All were greater than 5.

χ^2 Test Statistic = 285.0610

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 285.0610.

The sample data significantly disagrees with the null hypothesis since the test statistic falls in the right tail determined by the critical value 21.0261. This also indicates that the observed sample counts were significantly different than the expected counts.

P-value = 0 = 0%

If the null hypothesis is true, there is a 0% probability of getting the sample data or more extreme by sampling variability.

The P-value is lower than the 5% significance level.

It is unlikely for this data to have occurred by sampling variability.

Reject H_0.

Conclusion: There is significant evidence to support the claim that a persons' health is related to their education.

The P-value is low, indicating that health and education are likely to be related.
33.

\(H_0 \) : The country a car is made in is not related to the number of cylinders.

\(H_A \) : The country a car is made in is related to the number of cylinders. (CLAIM)

Assumptions

Random? Yes. The car data was collected randomly.

Individuals Independent? Probably not. The population of types of cars is not that large and many types of cars are owned by the same company. The company may have similar numbers of cylinders in their cars.

Expected Counts at least 5? No. Most of the expected counts were below 5. This means this data would not be suitable for using the traditional chi-squared distribution. Notice the simulation does not look like it fits the chi-squared distribution very well. However this data may be used for simulation if the independence assumption and random had passed.

Degrees of freedom = \((r - 1)(c - 1) = (6 - 1)(4 - 1) = (5)(3) = 15\)

\(\chi^2 \) Test Statistic = 22.267

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 22.267.
Critical Value and tail Calculation determined by significance level (simulations will vary)

Approximate Critical value = 49.535 (answers may vary)

Notice that the Chi-square test statistic does not fall in the tail determined by the critical value. So the sample data does not significantly disagree with the null hypothesis. This also indicates that the observed sample counts were not significantly different than the expected counts.
P-value calculation with test statistic (P-values will vary)

Approximate P-value = 0.127 = 12.7% (answers will vary)

If the null hypothesis is true, there is a 12.7% probability of getting the sample data or more extreme by sampling variability.

The P-value is higher than the 1% significance level.

This sample data could have occurred by sampling variability.

Fail to reject H_0.

Conclusion: There is NOT significant evidence to support the claim that the country a car is made in is related to the number of cylinders.

The P-value is high, indicating that the country and cylinders are likely to be not related. However, a high P-value is not evidence and this data did not pass all of the assumptions for randomized simulation.
H_0: Tattoos are not related to social media. (CLAIM)

H_A: Tattoos are related to social media.

Assumptions

Random or representative? Yes. This data was a census of all math 140 students during the fall 2015 semester. Though it is not random, it is likely to be representative of all math 140 students in all semester.

Individuals Independent? No. The individual students came from the same classes.

Expected Counts at least 5? Yes. All of the expected counts were greater than 5.

$$\text{Degrees of freedom} = (r - 1)(c - 1) = (5 - 1)(2 - 1) = (4)(1) = 4$$

$$\chi^2 \text{ Test Statistic} = 7.531$$

The sum of the averages of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis is 7.531.
Critical Value and tail Calculation determined by significance level (simulations will vary)

Approximate Critical value = 9.132 (answers may vary)

Notice that the Chi-square test statistic does not fall in the tail determined by the critical value. So the sample data does not significantly disagree with the null hypothesis. This also indicates that the observed sample counts were not significantly different than the expected counts.
P-value calculation with test statistic (P-values will vary)

Approximate P-value = 0.105 = 10.5% (answers will vary)

If the null hypothesis is true, there is a 10.5% probability of getting the sample data or more extreme by sampling variability.

The P-value is higher than the 5% significance level.

This sample data could have occurred by sampling variability.

Fail to reject H_0.

Conclusion: There is NOT significant evidence to reject the claim that tattoos are not related to social media.

The P-value is high, indicating that tattoos are likely to be not related. However, the high P-value is not evidence and this data did not pass all of the assumptions for randomized simulation.

Section 4G

1. The response variable (Y) is the focus of the correlation study and the variable you want to make predictions about.

3. R-squared is the percentage of variability in the response variable (Y) that can be explained by the explanatory variable (X).

5. The slope of the regression line is the amount of increase or decrease in the response variable (Y) for every 1 unit increase in the explanatory variable (x).
7. Regression line formulas are only accurate in the scope of the X-values. Extrapolation is making a prediction outside the scope of the X-value. So when a person extrapolates, they plug in a number into the formula that the formula was never designed for. Extrapolation results in predictions that are not accurate and have a lot of error.

9.

a. The scatterplot and the correlation coefficient indicate a strong positive correlation between nicotine and carbon monoxide.

b.

\[r^2 = 0.863^2 = 0.745 = 74.5\% \]

74.5% of the variability in carbon monoxide can be explained by the linear relationship with nicotine.

c.

Slope = +12.306

For every one mg increase in nicotine, the average carbon monoxide is increasing 12.306 ppm.

d.

Y-intercept = 0.795

If a cigarette has zero mg of nicotine, then the predicted amount of carbon monoxide would be 0.795 ppm.

Yes. The Y-intercept sentence seems to make sense. The Y-intercept is probably not very accurate since zero is not in the scope of the x values. Hence plugging in zero would be an extrapolation.

e.

The points in the scatterplot are 2.3 ppm from the regression line on average.

The average prediction error is 2.3 ppm.
f. Regression Line: $Y = 0.795 + 12.306 \times X$

Prediction of Y (ppm) when $X = 1.2$ mg nicotine

$Y = 0.795 + 12.306 \times X$

$Y = 0.795 + 12.306 \times (1.2)$

$Y = 0.795 + 14.7672$

$Y = 15.5622$ ppm

If a cigarette has 1.2 mg of nicotine, we predict the carbon monoxide to be 15.5622 ppm.

(This prediction could be off by 2.3 ppm on average.)

11.

a. The scatterplot and the correlation coefficient indicate a strong positive correlation between nicotine and carbon monoxide.

b. $r^2 = 0.908^2 = 0.824 = 82.4\%$

82.4\% of the variability in weight can be explained by the linear relationship with waist size.

c. Slope = +2.395

For every one cm increase in waist size, the average weight of the adults is increasing 2.395 pounds.

d. Y-intercept = -51.728

If the waist size was zero cm, then the predicted weight would be -51.728 pounds.

No the Y-intercept does not make sense. It is impossible for the waist size of an adult to be zero cm. It is also impossible for the weight of an adult to be -51.728 pounds. The Y-intercept is not accurate since zero is not in the scope of the x values. Hence plugging in zero would be an extrapolation.
e. The points in the scatterplot are 14.6809 pounds from the regression line on average. The average prediction error is 14.6809 pounds.

f. Regression Line: \(Y = -51.728 + 2.395 \times X \)

Prediction of \(Y \) (pounds) when \(X = 100 \) cm (waist)

\[
Y = -51.728 + 2.395 \times 100
\]

\[
Y = -51.728 + 239.5
\]

\[
Y = 187.772 \text{ pounds}
\]

If an adult's waist size is 100 cm, we predict the weight to be 187.772 pounds. (This prediction could be off by 14.608 pounds on average.)

13.

a. The scatterplot and the correlation coefficient indicate a strong positive correlation between the age and length of bears.

b. \(r^2 = 0.719^2 = 0.517 = 51.7\% \)

51.7% of the variability in bear length can be explained by the linear relationship with the age of the bear.

c. Slope = +0.228

For every one month older a bear gets, the average length of the bears is increasing 0.228 inch.
d.

Y-intercept = 48.69

If the age of the bear is zero months old, then the predicted length would be 48.69 inches.

The Y-intercept does make sense as the average length of a newborn bear. The Y-intercept is not accurate though since zero is not in the scope of the x values. Hence plugging in zero would be an extrapolation. It is no surprise that the predicted length is way off from what we expect in a newborn bear.

e.

The points in the scatterplot are 7.51 inches from the regression line on average.

The average prediction error is 7.51 inches.

f.

Regression Line: Y = 48.69 + 0.228 X

Prediction of Y (length in inches) when X = 24 months (age)

Y = 48.69 + 0.228 X

Y = 48.69 + 0.228 (24)

Y = 48.69 + 5.472

Y = 54.162 inches

If a bear is 24 months old, we predict the length to be 54.162 inches.

(This prediction could be off by 7.51 inches on average.)

15.

a.

The scatterplot and the correlation coefficient indicate a strong negative correlation between the weight of a car and the gas mileage.

b.

\[r^2 = (-0.903)^2 = 0.815 = 81.5\% \]

81.5% of the variability in gas mileage can be explained by the linear relationship with the weight of the car.
c.
Slope = \(-8.372\)
For every 1 ton increase in the weight of a car, the average gas mileage decreases 8.372 mpg.

d.
Y-intercept = 48.741
If the weight of a car is zero tons, then the predicted gas mileage would be 48.741 mpg.
The Y-intercept does not make sense. It is impossible for the weight of a car to be zero tons. The Y-intercept is not accurate though since zero is not in the scope of the x values. Hence plugging in zero would be an extrapolation.

e.
The points in the scatterplot are 2.8516 mpg from the regression line on average.
The average prediction error is 2.8516 mpg.

f.
Regression Line: \(Y = 48.741 - 8.372 \times X \)
Prediction of \(Y \) (mpg) of car when weight \(X = 3 \) tons
\[Y = 48.741 - 8.372 \times (3) \]
\[Y = 23.625 \text{ mpg} \]
If a car weighs 3 tons, we predict the average gas mileage to be 23.625 mpg.
(This prediction could be off by 2.8516 mpg on average.)

Section 4H

<table>
<thead>
<tr>
<th>T-test statistic or Correlation Coefficient (r)</th>
<th>Sentence to explain T-test statistic or Correlation Coefficient (r)</th>
<th>Critical Value (T or r)</th>
<th>Does the T-test statistic or r-value fall in a tail determined by a critical value? (Yes or No)</th>
<th>Does sample data significantly disagree with (H_0)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (T = -2.441)</td>
<td>The slope is 2.441 standard errors below zero.</td>
<td>(\pm 1.775)</td>
<td>Yes. In tail.</td>
<td>Significantly Disagrees with (H_0)</td>
</tr>
<tr>
<td>2. (r = 0.183)</td>
<td></td>
<td>0.316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. (T = +1.166)</td>
<td>The slope is 1.166 standard errors above zero.</td>
<td>+2.003</td>
<td>No. Not in tail.</td>
<td>Does NOT significantly Disagrees with (H_0)</td>
</tr>
<tr>
<td>4. (r = -0.799)</td>
<td></td>
<td>(\pm 0.286)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. (T = +3.118)</td>
<td>The slope is 3.118 standard errors above zero.</td>
<td>+2.714</td>
<td>Yes. In tail.</td>
<td>Significantly Disagrees with (H_0)</td>
</tr>
<tr>
<td>6. (r = 0.921)</td>
<td></td>
<td>0.339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. (T = -0.852)</td>
<td>The slope is 0.852 standard errors below zero.</td>
<td>(\pm 2.322)</td>
<td>No. Not in tail.</td>
<td>Does NOT significantly Disagrees with (H_0)</td>
</tr>
<tr>
<td>8. (r = -0.026)</td>
<td></td>
<td>-0.279</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.
T = +1.339
The slope is 1.339 standard errors above zero.
±1.997
No. Not in tail.
Does NOT significantly Disagrees with H_0.

10.
r = 0.483
±0.303

<table>
<thead>
<tr>
<th>P-value Proportion</th>
<th>P-value %</th>
<th>Sentence to explain the P-value</th>
<th>Significance Level %</th>
<th>Significance level Proportion</th>
<th>If H_0 is true, could the sample data occur by random chance or is it unlikely?</th>
<th>Reject H_0 or Fail to reject H_0?</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 0.521</td>
<td>52.1%</td>
<td>If H_0 is true, there is a 52.1% probability of getting the sample data or more extreme by sampling variability.</td>
<td>10%</td>
<td>0.10</td>
<td>Could be sampling variability (random chance)</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>12. 0.0426</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. 3.41 × 10⁻⁵</td>
<td>0.00341%</td>
<td>If H_0 is true, there is a 0.00341% probability of getting the sample data or more extreme by sampling variability.</td>
<td>5%</td>
<td>0.05</td>
<td>Unlikely to be sampling variability (random chance)</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>14. 0.0033</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. 0.768</td>
<td>76.8%</td>
<td>If H_0 is true, there is a 76.8% probability of getting the sample data or more extreme by sampling variability.</td>
<td>5%</td>
<td>0.05</td>
<td>Could be sampling variability (random chance)</td>
<td>Fail to reject H_0</td>
</tr>
<tr>
<td>16. 0</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. 0.0428</td>
<td>4.28%</td>
<td>If H_0 is true, there is a 4.28% probability of getting the sample data or more extreme by sampling variability.</td>
<td>5%</td>
<td>0.05</td>
<td>Unlikely to be sampling variability (random chance)</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>18. 0.277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. 6.04 × 10⁻⁶</td>
<td>0.000604%</td>
<td>If H_0 is true, there is a 0.000604% probability of getting the sample data or more extreme by sampling variability.</td>
<td>1%</td>
<td>0.01</td>
<td>Unlikely to be sampling variability (random chance)</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>20. 0.0178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21.
Correlation Test Assumptions: Quantitative ordered pair sample data collected randomly. Data values within the sample should be independent of each other, the sample size should be at least 30, the scatterplot and correlation coefficient (r) should show some linear pattern, there should be no influential outliers in the scatterplot, the histogram of the residuals should be nearly normal, the histogram of the residuals should be centered close to zero, the residual plot verses the x variables should be evenly spread out.
23.
Look for points in the scatterplot that look very far from the regression line vertically. If the correlation coefficient is close to +1 or −1, then there is strong correlation and is is unlikely that the scatterplot has influential outliers. If the correlation coefficient gets closer to zero, then there may be influential outliers.

25.
Hold your fingers horizontally and put all of the dots in the residual plots between your fingers. As you go across the plot, if your fingers remain about the same distance apart, then the graph is probably evenly spaced. If your fingers get much closer in certain parts of the graph and farther away in others, it is probably not evenly spaced.

27.
\(H_0: \text{Population Slope } (\beta_1) = 0 \text{ (No correlation)} \) CLAIM
\(H_a: \text{ Population Slope } (\beta_1) \neq 0 \text{ (Is correlation)} \)

Assumptions:
Quantitative ordered pair sample data collected randomly? Yes. Given
Data values within the sample should be independent of each other? Yes since it is a small random sample from a large population of all women.
The sample size should be at least 30? Yes. There are 40 women in the data.
The scatterplot and correlation coefficient (r) should show some linear pattern? Yes. The correlation coefficient and the scatterplot indicate a linear pattern. The correlation coefficient is not close to zero.
There should be no influential outliers in the scatterplot? Yes. The strong correlation coefficient and the scatterplot indicate no influential outliers.
The histogram of the residuals should be nearly normal? No. The histogram looks skewed left.
The histogram of the residuals should be centered close to zero? Maybe. The highest bar in the histogram is really close to the zero line but is a little off.
The residual plot verses the x variables should be evenly spread out? No. There is a drastic fan shape or sidewise V pattern. It is not evenly spaced.
Correlation coefficient (r) = 0.7854
There is a strong positive correlation between the systolic and diastolic blood pressure for women.
Slope = 0.5335
For every 1 mm of Hg increase in a woman's systolic blood pressure, the diastolic blood pressure increases 0.5335 mm of Hg.
T-test statistic for correlation = 7.8209
The sample slope is 7.8209 standard errors above zero.
Sample data does significantly disagree with null hypothesis since the test statistic did fall in the tail determined by the critical values.
The slope of the regression line is significantly different (higher) than zero since the test statistic did fall in the tail determined by the critical values.
P-value (answer will vary) = 0.0000000019615 = 0.00000019615%
P-value is lower than 5% significance level.
Unlikely to be sampling variability.
Reject the null hypothesis.

There is significant evidence to reject the claim that there is no linear relationship (no correlation) between the systolic and diastolic blood pressures for women.

29.

\(H_0: \) Population Slope \((\beta_1) = 0 \) (No correlation) CLAIM

\(H_A: \) Population Slope \((\beta_1) \neq 0 \) (Is correlation)

Assumptions:

Quantitative ordered pair sample data collected randomly? Yes. Given

Data values within the sample should be independent of each other? Maybe not. If the bears came from the same area then they would not be independent.

The sample size should be at least 30? Yes. There are 54 bears in the data.

The scatterplot and correlation coefficient \((r)\) should show some linear pattern? Yes. The correlation coefficient and the scatterplot indicate a linear pattern. The correlation coefficient is not close to zero.

There should be no influential outliers in the scatter? Yes. The strong correlation coefficient and the scatterplot indicate no influential outliers.

The histogram of the residuals should be nearly normal? No. The histogram looks skewed right.

The histogram of the residuals should be centered close to zero? Maybe. The highest bar in the histogram is really close to the zero line but is a little off.

The residual plot versus the x variables should be evenly spread out? No. There is a drastic fan shape or sidewise V pattern. It is not evenly spaced.

Correlation coefficient \((r) = 0.9341\)

There is a strong positive correlation between the neck circumference and weight of the bears in the sample.

Slope = 20.1694

For every 1 inch increase in the bears neck circumference, the weight increases 20.1694 pounds.

T-test statistic for correlation = 18.8612

The sample slope is 18.8612 standard errors above zero.

Sample data does significantly disagree with null hypothesis since the test statistic did fall in the tail determined by the critical values.

The slope of the regression line is significantly different (higher) than zero since the test statistic did fall in the tail determined by the critical values.

P-value (answer will vary) = 0 = 0%

P-value is lower than 5% significance level.

Unlikely to be sampling variability.

Reject the null hypothesis.

There is significant evidence to reject the claim that there is no linear relationship (no correlation) between the neck circumference and weight of bears.
Tail for Correlation Coefficient (right tail and 10% sig level) (simulations will vary)
Tail for Slope (right tail and 10% sig level) (simulations will vary)

P-value calculation from slope simulation (answers will vary)

\[H_0: \text{Population Slope } (\beta_1) = 0 \text{ (No correlation)} \]

\[H_A: \text{Population Slope } (\beta_1) > 0 \text{ (Is positive correlation) CLAIM} \]

The correlation coefficient \((r) = 0.917\)

There is a strong positive correlation between the horsepower and weights of cars.
The correlation coefficient does fall in the tail determined by the correlation simulation and the 10% sig level.

The slope = 0.024

For every 1 horsepower increase in a car, the weights are increasing 0.024 tons on average.

The slope of 0.024 does fall in the tail determined by the slope simulation and the 10% sig level.

Sample data does significantly disagree with null hypothesis since the slope and correlation coefficient did fall in the tail determined by the simulations.

The slope of the regression line is significantly different (higher) than zero since the slope did fall in the tail determined by the simulation.

P-value (answer will vary) = 0 = 0%

P-value is lower than 10% significance level.

Unlikely to be sampling variability.

Reject the null hypothesis.

There is significant evidence to support the claim that there is a positive linear relationship (positive correlation) between the horsepower and weight of cars.

T-test statistic calculation (answers will vary) = \(\frac{(0.024 - 0)}{0.0044} = 5.4545 \)

The slope is 5.4545 standard errors above zero.

Chapter 4 Review

1.

Correlation: Statistical analysis that determines if there is a relationship between two different quantitative variables.

Regression: Statistical analysis that involves finding the line or model that best fits a quantitative relationship, using the model to make predictions, and analyzing error in those predictions.

Explanatory Variable \((x)\): Another name for the x-variable or independent variable in a correlation study.

Response Variable \((y)\): Another name for the y-variable or dependent variable in a correlation study.

Correlation Coefficient \((r)\): A statistic between −1 and +1 that measures the strength and direction of linear relationships between two quantitative variables.

R-squared \((r^2)\): Also called the coefficient of determination. This statistic measures the percent of variability in the y-variable that can be explained by the linear relationship with the x-variable.

Residual \((y - \hat{y})\): The vertical distance between the regression line and a point in the scatterplot.

Standard Deviation of the Residual Errors \((s_e)\): A statistic that measures how far points in a scatterplot are from the regression line on average and measures the average amount of prediction error.

Slope \((b_1)\): The amount of increase or decrease in the y-variable for every one-unit increase in the x-variable.

Y-Intercept \((b_0)\): The predicted y-value when the x-value is zero.

Regression Line \((\hat{y} = b_0 + b_1x)\): Also called the line of best fit or the line of least squares. This line minimizes the vertical distances between it and all the points in the scatterplot.
Scatterplot: A graph for visualizing the relationship between two quantitative ordered pair variables. The ordered pairs \((x, y)\) are plotted on the rectangular coordinate system.

Residual Plot: A graph that pairs the residuals with the x values. This graph should be evenly spread out and not fan shaped.

Histogram of the Residuals: A graph showing the shape of the residuals. This graph should be nearly normal and centered close to zero.

Hypothesis Test: A procedure for testing a claim about a population.

Random Chance: Another word for sampling variability. The principle that random samples from the same population will usually be different and give very different statistics.

Critical Value: If the test statistic is higher than this number, then the sample data significantly disagrees with the null hypothesis. The z or t score critical values are also used to calculate margin of error in confidence intervals.

P-value: The probability of getting the sample data or more extreme by random chance if the null hypothesis is true.

Significance Level (\(\alpha\)): Also called the Alpha Level. If the P-value is lower than this number, then the sample data significantly disagrees with the null hypothesis and is unlikely to have happened by random chance. This is also the probability of making a type 1 error.

Randomized Simulation: A technique for visualizing sampling variability in a hypothesis test. The computer assumes the null hypothesis is true, and then generates random samples. If the sample data or test statistic falls in the tail, then the sample data significantly disagrees with the null hypothesis. This technique can also calculate the P-value without a formula.

Chi-square test statistic \((\chi^2)\): The sum of the average of the squares of the differences between the observed sample counts and the expected counts from the null hypothesis.

F-test statistic: The ratio of the variance between the groups to the variance within the groups.

T-test statistic for correlation: The number of standard errors that the slope is above or below zero.

Z-test statistic for two-population proportion: The number of standard errors that the sample proportion from group 1 is above or below the sample proportion from group 2.

T-test statistic for two-population mean: The number of standard errors that the sample mean from group 1 is above or below the sample mean from group 2.

#2-4.

Two-population proportion test

\(H_0: \pi_1 = \pi_2\)

\(H_a: \pi_1 > \pi_2\)

OR

\(H_0: \pi_1 - \pi_2 = 0\)

\(H_a: \pi_1 - \pi_2 > 0\)

Z-test statistic

Assumptions: Random Samples, Individuals within and between the samples are independent, both samples have at least 10 success and at least 10 failures.
Goodness of Fit proportion test

\[H_0: \pi_1 = \pi_2 = \pi_3 = \pi_4 \]
\[H_a: \text{at least one } \neq \]

OR

\[H_0: \pi_1 = 0.5, \pi_2 = 0.25, \pi_3 = 0.15, \pi_4 = 0.1 \]
\[H_a: \text{at least one } \neq \]

Chi-square test statistic (\(\chi^2 \))

Assumptions: Random Samples, Individuals within and between the samples are independent, all expected counts are at least 5.

Categorical Association Test

\[H_0: \text{Categorical variables are not related.} \]
\[H_a: \text{Categorical variables are related.} \]

Chi-square test statistic (\(\chi^2 \))

Assumptions: Random Sample or Random Samples, Individuals within (and between) the samples are independent, all expected counts are at least 5.

Two-population mean test

\[H_0: \mu_1 = \mu_2 \]
\[H_a: \mu_1 < \mu_2 \]

OR

\[H_0: \mu_1 - \mu_2 = 0 \]
\[H_a: \mu_1 - \mu_2 < 0 \]

OR

\[H_0: \mu_d = 0 \]
\[H_a: \mu_d < 0 \]

T-test statistic for two-population mean.

Assumptions: Random Samples, Individuals within (and between) the samples are independent, both samples have a sample size of at least 30 or nearly normal.

ANOVA test

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]
\[H_a: \text{at least one } \neq \]

F-test statistic

Assumptions: Random Samples, Individuals within (and between) the samples are independent, all samples have a sample size of at least 30 or nearly normal, sample standard deviations are close.

Correlation Test

\[H_0: \text{Population Slope } (\beta_1) = 0 \]
Introduction to Statistics for Community College Students

Appendix A: Answer Keys to Odd Exercises Chapter 4

H₀: Population Slope \((\beta_1) \neq 0 \)

OR

H₀: Population Correlation Coefficient \((\rho) = 0 \)

Hₐ: Population Correlation Coefficient \((\rho) \neq 0 \)

T-test statistic for correlation.

Assumptions: Quantitative ordered pair sample data collected randomly, Data values within the sample should be independent of each other, the sample size should be at least 30, the scatterplot and correlation coefficient \((r) \) should show some linear pattern, there should be no influential outliers in the scatterplot, the histogram of the residuals should be nearly normal, the histogram of the residuals should be centered close to zero, the residual plot verses the x variables should be evenly spread out.

5.

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Critical Value</th>
<th>Does the sample data significantly disagree with (H₀)?</th>
<th>Explain why.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F = 2.174)</td>
<td>3.823</td>
<td>Not significantly disagree.</td>
<td>Test stat not in tail.</td>
</tr>
<tr>
<td>(T = -2.556)</td>
<td>± 1.96</td>
<td>Significantly disagree.</td>
<td>Test stat in tail.</td>
</tr>
<tr>
<td>(\chi^2 = 16.87)</td>
<td>9.977</td>
<td>Significantly disagree.</td>
<td>Test stat in tail.</td>
</tr>
<tr>
<td>(F = 5.339)</td>
<td>2.742</td>
<td>Significantly disagree.</td>
<td>Test stat in tail.</td>
</tr>
<tr>
<td>(T = 1.349)</td>
<td>± 2.576</td>
<td>Not significantly disagree.</td>
<td>Test stat not in tail.</td>
</tr>
<tr>
<td>(\chi^2 = 1.883)</td>
<td>7.187</td>
<td>Not significantly disagree.</td>
<td>Test stat not in tail.</td>
</tr>
</tbody>
</table>

6.

<table>
<thead>
<tr>
<th>P-value</th>
<th>P-value %</th>
<th>Significance Level</th>
<th>Does the sample data significantly disagree with (H₀)?</th>
<th>Could be random chance or Unlikely?</th>
<th>Reject (H₀) or fail to reject?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.238</td>
<td>23.8%</td>
<td>5%</td>
<td>Not significantly disagree.</td>
<td>Could be.</td>
<td>Fail to reject (H₀).</td>
</tr>
<tr>
<td>0.0003</td>
<td>0.03%</td>
<td>1%</td>
<td>Significantly disagree.</td>
<td>Unlikely</td>
<td>Reject (H₀).</td>
</tr>
<tr>
<td>5.7 x 10^{-6}</td>
<td>0.00057%</td>
<td>10%</td>
<td>Significantly disagree.</td>
<td>Unlikely</td>
<td>Reject (H₀).</td>
</tr>
<tr>
<td>0.441</td>
<td>44.1%</td>
<td>5%</td>
<td>Not significantly disagree.</td>
<td>Could be.</td>
<td>Fail to reject (H₀).</td>
</tr>
<tr>
<td>0.138</td>
<td>13.8%</td>
<td>1%</td>
<td>Not significantly disagree.</td>
<td>Could be.</td>
<td>Fail to reject (H₀).</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>10%</td>
<td>Significantly disagree.</td>
<td>Unlikely</td>
<td>Reject (H₀).</td>
</tr>
</tbody>
</table>

7.

<table>
<thead>
<tr>
<th>P-value</th>
<th>Sig Level</th>
<th>Claim</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.238</td>
<td>5%</td>
<td>(H₀)</td>
<td>There is not significant evidence to reject the claim.</td>
</tr>
<tr>
<td>0.0003</td>
<td>1%</td>
<td>(Hₐ)</td>
<td>There is significant evidence to support the claim.</td>
</tr>
<tr>
<td>5.7 x 10^{-6}</td>
<td>10%</td>
<td>(H₀)</td>
<td>There is significant evidence to reject the claim.</td>
</tr>
<tr>
<td>0.441</td>
<td>5%</td>
<td>(Hₐ)</td>
<td>There is not significant evidence to support the claim.</td>
</tr>
<tr>
<td>0.138</td>
<td>1%</td>
<td>(H₀)</td>
<td>There is not significant evidence to reject the claim.</td>
</tr>
<tr>
<td>0</td>
<td>10%</td>
<td>(Hₐ)</td>
<td>There is significant evidence to support the claim.</td>
</tr>
</tbody>
</table>
8.
Correlation Test

\[H_0: \ \text{Population Slope} (\beta_1) = 0 \]

\[H_a: \ \text{Population Slope} (\beta_1) \neq 0 \]

OR

\[H_0: \ \text{Population Correlation Coefficient} (\rho) = 0 \]

\[H_a: \ \text{Population Correlation Coefficient} (\rho) \neq 0 \]

T-test statistic for correlation.

Assumptions: Quantitative ordered pair sample data collected randomly, Data values within the sample should be independent of each other, the sample size should be at least 30, the scatterplot and correlation coefficient (r) should show some linear pattern, there should be no influential outliers in the scatterplot, the histogram of the residuals should be nearly normal, the histogram of the residuals should be centered close to zero, the residual plot verses the x variables should be evenly spread out.

9.
Categorical Association Test

\[H_0: \ \text{Categorical variables are not related.} \]

\[H_a: \ \text{Categorical variables are related.} \]

Chi-square test statistic (\(\chi^2 \))

Assumptions: Random Sample or Random Samples, Individuals within (and between) the samples are independent, all expected counts are at least 5.

10.
ANOVA test

\[H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \]

\[H_a: \ \text{at least one} \neq \]

F-test statistic

Assumptions: Random Samples, Individuals within (and between) the samples are independent, all samples have a sample size of at least 30 or nearly normal, sample standard deviations are close.

11.
Goodness of Fit proportion test

\[H_0: \pi_1 = \pi_2 = \pi_3 = \pi_4 \]

\[H_a: \ \text{at least one} \neq \]

OR

\[H_0: \pi_1 = 0.5, \ \pi_2 = 0.25, \ \pi_3 = 0.15, \ \pi_4 = 0.1 \]

\[H_a: \ \text{at least one} \neq \]

Chi-square test statistic (\(\chi^2 \))

Assumptions: Random Samples, Individuals within and between the samples are independent, all expected counts are at least 5.
12. ANOVA since the amount of money is quantitative and the city is categorical.

13. Goodness of Fit since we are checking a specific percentage in multiple groups.

14. Correlation test since the amount of rainfall and number of fires are both quantitative variables.

15. Categorical Association Test since the type of health insurance and the education level are both categorical variables with multiple responses.

16. % of knee injuries from soccer = 31/100 = 31%
% of knee injuries from tennis = 5/100 = 5%
These percentages are significantly different indicating the sport may be related to having a knee injury.
Goodness of Fit test.

\[H_0: \pi_1 = \pi_2 = \pi_3 = \pi_4 = \pi_5 = \pi_6 \text{ (Claim)} \]

\[H_A: \text{at least one } \neq \]

Assumptions:
Random? Yes. Given
Individuals independent? Yes since it is a small random sample from a large population.
Expected counts at least 5? Yes. All expected counts are 16.7.
Chi-square test statistic = 28.16
Sample data significantly disagrees with null hypothesis since the test statistic falls in the tail determined by the critical value.
Observed sample counts significantly disagrees with expected counts in the null hypothesis since the test statistic falls in the tail determined by the critical value.
P-value = 0.0033869%
P-value is less than 1% significance level.
Unlikely to be sampling variability.
Reject the null hypothesis.

There is significant evidence to reject the claim that the percentage of knee injuries are the same in the various sports.
The data indicates that having a knee injury is related to the sport.
17.

% of raccoonss have rabies = 7/27 = 25.9%
% of squirrels have rabies = 17/38 = 44.7%
% of chipmunks have rabies = 8/30 = 26.7%

If these percentages are close, it would indicate that the type of animal is not related to having rabies.
If these percentages are significantly different, it would indicate that the type of animal is related to having rabies.

Categorical Association Test. (Since this data was collected from 1 random sample, it is sometimes referred to as "independence").

\(H_0: \) Rabies status is not related to the type of animal.
\(H_A: \) Rabies status is related to the type of animal. (Claim)

Assumptions:
Random? Yes. Given
Individuals independent? It might not be independent if all the animals came from the same region.
Expected counts at least 5? Yes. The expected counts were 12.8, 10.11, 9.09, 25.2, 19.89, and 17.91.
Chi-square test statistic = 3.467

Sample data does NOT significantly disagrees with null hypothesis since the test statistic did NOT fall in the tail determined by the critical value.

Observed sample counts do NOT significantly disagree with expected counts in the null hypothesis since the test statistic did NOT fall in the tail determined by the critical value.

P-value = 17.67%
P-value is higher than 5% significance level.
Could be sampling variability.
Fail to reject the null hypothesis.

There is not significant evidence to support the claim that the type of animal is related to rabies status.
The data indicates that the type of animal may not be related to having rabies.
Critical Value Calculations (Answers will vary.)
% of males that believe in one true love = \(\frac{372}{1213} = 30.7\% \)

% of females that believe in one true love = \(\frac{363}{1412} = 25.7\% \)

If these percentages are close, it would indicate that gender is not related to believing in one true love.

If these percentages are significantly different, it would indicate that gender is related to believing in one true love.

Categorical Association Test.

\[H_0: \text{Belief in one true love is not related to gender.} \] (Claim)

\[H_A: \text{Belief in one true love is related to gender.} \]

Assumptions:

Random? Unknown.

Individuals independent? If it is a random sample, then it probably is independent.

Expected counts at least 5? Yes. The expected counts were 339.6, 395.4, 837.3, 974.7, 36, and 42.

Chi-square test statistic = 7.989

Critical value (answer will vary) = 4.515

Sample data does significantly disagree with null hypothesis since the test statistic did fall in the tail determined by the critical value.

Observed sample counts do significantly disagree with expected counts in the null hypothesis since the test statistic did fall in the tail determined by the critical value.

P-value (answer will vary) = 0.015 = 1.5\%
P-value is lower than 10% significance level.

Unlikely to be sampling variability.

Reject the null hypothesis.

There is significant evidence to reject the claim that gender is not related to believing in one true love.

The data indicates that gender is related to believing in one true love.

19.

Original Sample

$n = 323, F = 0.437$

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Snapchat</th>
<th>Other Facebook</th>
<th>Instagram</th>
<th>Twitter</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>71</td>
<td>27</td>
<td>72</td>
<td>124</td>
<td>29</td>
</tr>
<tr>
<td>Mean</td>
<td>11.5</td>
<td>10.9</td>
<td>12.5</td>
<td>11.9</td>
<td>11.8</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>6.4</td>
<td>5.3</td>
<td>8.0</td>
<td>5.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>

ANOVA Table

<table>
<thead>
<tr>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>4</td>
<td>64.48</td>
<td>16.12</td>
</tr>
<tr>
<td>Error</td>
<td>318</td>
<td>11720.01</td>
<td>36.85</td>
</tr>
<tr>
<td>Total</td>
<td>322</td>
<td>11784.49</td>
<td></td>
</tr>
</tbody>
</table>

Randomization Dotplot of F-statistic, Null hypothesis: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$
$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ (not related) CLAIM

H_A: at least one ≠ (related)

Assumptions:

Random Samples? No. This data was a census. It may be representative though.

Individuals within (and between) the samples are independent? No. These students came from the same math 140 classes.

All samples have a sample size of at least 30 or nearly normal? Maybe. Shapes are unknown. All the sample sizes are above 30 except for twitter which was 29.

Sample standard deviations are close? No. One of the standard deviations (8) was more than twice as large as another (3.9).

F-test statistic = 0.437

Critical Value (answer will vary) = 2.368

Sample data does NOT significantly disagree with null hypothesis since the test statistic did NOT fall in the tail determined by the critical value.

The variance between the groups is NOT significantly higher than the variance within since the test statistic did NOT fall in the tail determined by the critical value.

P-value (answer will vary) = 0.780 = 78.0%

P-value is higher than 5% significance level.

Could be sampling variability.

Fail to reject the null hypothesis.
There is not significant evidence to reject the claim that the person's favorite social media is not related to the money spent on meals.

The data indicates that social media might be NOT related to the money spent on meals. We do not have evidence and the data did not pass the assumptions.

20.

\(r = 0.7997 \)

There is a strong positive correlation between the weights and BMI for the men in the sample.

\(r^2 = 0.6395 = 63.95\% \)

63.95\% of the variability in body mass index can be explained by the relationship with weight.

Slope = 0.1042

For every 1 pound increase in weight, the men’s BMI is increasing 0.1042 kg/m².

Y-intercept = 8.0169 \((\text{Does not make sense since it is impossible for a man's weight to be zero.}) \)

If a man’s weight is zero pounds, the predicted BMI would be 8.0169 kg/m².

Standard Deviation of Residual Errors = 2.0869 kg/m².

The average prediction error is 2.0869 kg/m².

The average vertical distance from the regression line is 2.0869 kg/m².

Prediction for man weighing 185 pounds.

\[
\hat{y} = 8.0169 + 0.1042X
\]

\[
\hat{y} = 8.0169 + 0.1042(185)
\]

\[
\hat{y} = 8.0169 + 19.277
\]

\[
\hat{y} = 27.2939 \text{ kg/m}^2
\]

(This prediction could have an average error of 2.0869 kg/m².)

Correlation Test

\(H_0: \) Population Slope (\(\beta_1 \)) = 0 \((\text{No correlation}) \)

\(H_A: \) Population Slope (\(\beta_1 \)) \(\neq 0 \) \((\text{Is correlation}) \text{ CLAIM} \)

OR

\(H_0: \) Population Correlation Coefficient (\(\rho \)) = 0 \((\text{No correlation}) \)

\(H_A: \) Population Correlation Coefficient (\(\rho \)) \(\neq 0 \) \((\text{Is correlation}) \text{ CLAIM} \)

Assumptions:

Quantitative ordered pair sample data collected randomly? Yes. Given

Data values within the sample should be independent of each other? Yes since it is a small random sample from a large population of all men.

The sample size should be at least 30? Yes. There are 40 men in the data.

The scatterplot and correlation coefficient (\(r \)) should show some linear pattern? Yes. The correlation coefficient and the scatterplot indicate a linear pattern. The correlation coefficient is not close to zero.
There should be no influential outliers in the scatterplot? Yes. The strong correlation coefficient and the scatterplot indicate no influential outliers.

The histogram of the residuals should be nearly normal? Yes. The histogram looks slightly skewed right, but can probably be thought of as nearly normal.

The histogram of the residuals should be centered close to zero? Yes. The highest bar in the histogram is touching the zero line.

The residual plot versus the x variables should be evenly spread out? Yes. There does not appear to be a drastic fan shape or sidewise V pattern. It is not perfectly even, but is close.

T-test statistic for correlation = 8.2095

Sample data does significantly disagree with null hypothesis since the test statistic did fall in the tail determined by the critical values.

The slope of the regression line is significantly different (higher) than zero since the test statistic did fall in the tail determined by the critical values.

P-value (answer will vary) = 0.0000000060619 = 0.000000060619%

P-value is lower than 1% significance level.

Unlikely to be sampling variability.

Reject the null hypothesis.

There is significant evidence to support the claim that there is a linear relationship (correlation) between the weight and BMI for men.