Binomial Probabilities

A Binomial Probability is a type of discrete probability with only two outcomes (male or female, win or lose, have disease or don’t have disease)

Success Category (have disease)

Failure Category (don’t have disease)

For a binomial probability, individual observations should be independent of each other with a consistent probability of success. (For example, winning at cards often fails this assumption because the number of cards and the probabilities are always changing.)

Calculate Binomial Probabilities with StatCrunch

Stat Menu => Calculator => Binomial => Standard or Between

What you need?

X = # of successes and what you are finding the probability of

p = the probability of success in 1 observation

n = total number of observations

Note about inequality symbols.

Normal Probabilities: When dealing with continuous quantitative data with decimals, we had infinite totals so the probability of less than 3 kilograms is 2.999999999... or below. Hence for normal probabilities the probability of less than 3 is about the same as less than or equal to.
Binomial Probabilities: This is not the case for binomial probabilities. Winning a game less than 3 times means winning less than or equal to 2 times. So be careful about the wording with inequalities. For Binomial, StatCrunch gives the options of =, <, >, ≤, ≥ Remember greater than points right and less than points left.

Wording examples

= “probability that exactly 5 people have the disease”

> “ probability that she wins more than 4 times “

≥ “ probability that she wins 4 or more times “ or “ at least 4 times”

< “ probability that he wins less than 6 times “

≤ “ probability that he wins 6 times or less “ or “ at most 6 times”

Let’s look at an example.

Sarah likes to play slot machines in a Casino in Las Vegas. The particular slot machine she is playing has a 7% chance of winning. Suppose Sarah plays the game 35 total times.

1. What is the probability that Sarah wins more than 3 times?

\[P(x > 3) = ??? \]

We will need to go to StatCrunch and click the stat menu, then calculator, then binomial. Since this is not a “between” problem, click on the standard button. Notice n = 35, and p = 0.07 and x =3. Click the greater than but not the greater than or equal to.
2. What is the probability that Sarah wins at most 2 times?

We will need to go to StatCrunch and click the stat menu, then calculator, then binomial. Since this is not a “between” problem, click on the standard button. Notice $n = 35$, and $p = 0.07$ and $x = 2$. Click the less than or equal to sign.
3. Find the probability that Sarah wins 5, 6 or 7 times (between 5 and 7 inclusively)?

We will need to go to StatCrunch and click the stat menu, then calculator, then binomial. Since this is a “between” problem, click on the between button. Notice $n = 35$, and $p = 0.07$ and $x = 5$ and $x = 7$.

$P(X \leq 2) = 0.55249848$
Binomial Distribution

n: 35 p: 0.07

P(5 \leq X \leq 7) = 0.09239171